
International Journal of Research in Advent Technology, Vol.6, No.6, June 2018

E-ISSN: 2321-9637

Available online at www.ijrat.org

1239

Repairing Damaged Database Using Table Structure

Nadeem Beg
1
, Dr. R. B. Ingle

2

1
Department of Computer Engineering, Pune Institute of Computer Technology, Pune, India

2
Department of Computer Engineering, Pune Institute of Computer Technology, Pune, India

Email: nadeembeg007@gmail.com
1

Abstract - Database is collection of related data that can easily be manageable. In relational database system,
data is stored in the form of tables (i.e. rows and columns) and that data can be indexed so that one can
efficiently perform search operation on data. DBMS (database management system) organizes data in such a way
that it can easily be accessible. Like other computer systems, DBMS is also subject to failure due to several
reasons such as disk failure, hardware failure or transaction failure. After a failure, database must be recovered to
its previous consistent state as consistent data should be available whenever require. For example, during
execution of transaction, database system must ensure that all operations are carried out (i.e. completed
successfully) and changes made permanent into database or in case of failure, transaction had no effect on
database. For performance, application or programme is being integrated with database framework code, this
application or programme has rights to access database frameworks buffer, and because of this access the
possibility of data being corrupted due to unintentional application writes is increased, to detect and fix these
kinds of corruption we used an alternative approach that uses table header to fix corrupted region of data.

Index Terms - Database corruption, data integrity, detection, repair.

1. INTRODUCTION

Now a day, hardware is more reliable than ever

before, therefore programming errors are often the

biggest threat that affects availability of database

system. For high-performance, application programme

is integrated with database system programme,

therefore users get rights to add new data types into

database. Performance-critical software required high

performance that can achieved by accessing data

directly that stored in a main-memory [1]. In both

cases, because of inter-process communication, which

is complex and costlier, due to these it is difficult to

meet performance required by applications. Therefore,

availability of database can be affected by software

errors as well as errors in application programme.

Recovery is process of restoring database data that has

been corrupted, inadvertently deleted, made

inaccessible for some reason. The basic unit of

recovery in a database system is the transaction. It is a

unit of program execution that accesses and possibly

updates various data items. It is initiated by a user

program written in a high-level programming

language. A database system must ensure proper

execution of transactions despite failures i.e. either the

entire transaction executes, or none of it does.

Furthermore, it must manage concurrent execution of

transactions in a way that avoids the introduction of

inconsistency. To ensure integrity of the data, database

system must maintain the ACID properties of the

transactions. A computer system is subject to failure

due to several reasons like disk crash, power outage,

software error, a fire in the machine room, even

sabotage. Transactions may also fail for several

reasons, such as violation of integrity constraints or

deadlocks. In event of failure information concerning

the database system is lost. Recovery scheme detects

failures and restores the database to a state that existed

before the occurrence of the failure.

 Failure in database can stop the normal operation

(access to database) of a database. For some

failures, automatic recovery is applicable and

requires little or no action on the part of the

database user or database administrator. Several

types of failure need to be dealt with in a different

manner. There are mainly three types of failures:

transaction failures, system failures, and media

failures.

 Transaction Failure: When a transaction is failed

to execute or it reaches a point after which it

cannot be completed successfully it should abort.

This is called transaction failure. Logical error

and System error may cause a transaction to fail.

o Logical error: where a transaction

cannot complete because of it has

some code error or any internal error

condition [2].

o System error: where the database

system itself terminates an active

transaction because database is not

able to execute it or it should stop

because of some system condition.

Deadlock is example of system error

[2].

 System Crash: There are problems, which are

external to the system, which may cause the

system to stop abruptly and cause the system to

crash. For example, interruption in power

supplies, failure of underlying hardware or

software failure. Examples may include operating

system errors.

International Journal of Research in Advent Technology, Vol.6, No.6, June 2018

E-ISSN: 2321-9637

Available online at www.ijrat.org

1240

 Disk Failure: A disk failure occurs when any part

of the stable storage is destroyed. Disk failures

include formation of bad sectors, unreachability to

the disk, disk head crash or any other failure,

which destroys all or part of disk storage.

 Repair utility reads table file to detect errors.

Table file contains table header, field header and

record header followed by record. Header gives

information about table such as string identifier,

table encryption, auto encrypted value, memo

files and so on. This information is used to check

correctness of table as well as memo file. This

header value cross checked against table record to

identify corruption for example we can calculate

file length using table header and check that value

with actual file length.

2. REVIEW OF LITERATURE

Log Based Recovery [1], [2]: Log is a sequential

arrangement of the records, which keeps up the

records of actions performed on database by a

transaction. Log should be written before updating the

database physically and should be stored on non-

volatile storage which is fail-safe. Log reports

following information transaction id, item id, old

value and new value. This information is useful to

undo the transaction when transaction fails. There are

mainly two methods are used to update database:

Deferred update and Immediate update.
Deferred updates [2]: It update the database only

when transaction reached to commit point. Before

reaching commit, updates of all operations of a

transaction are stored in local place. For all

unsuccessful transaction, there is no need to use

UNDO as database is updated only after transaction

reached to commit point. Sometimes it requires to use

REDO operation that are stored in local place, as there

result may not yet updated in database, therefore

generally deferred update termed as „no-undo‟

algorithm. Below example of Deferred update method,

which updates database only after the commit point.

DEFERRED UPDATE

Log Database

<T0 start >
<T0, x, 400 >
<T0, y, 600 >
<T0 commit >

x = 400

y = 600

Immediate updates [2]: In this method database is

updated immediately after performing single or

several operations on database before to reach commit

point. All these operations are reported into the log,

before updating the database, so that after failure one

can easily rolled back to recover database into

previous known consistent state. Hence this method is

known as ‟undo/redo‟ algorithm.

IMMEDIATE UPDATE

Log Database

<T0 start >
<T0, x, 400, 500 >
<T0, y, 600, 700>

x = 500

y = 700

<T0 commit>

Shadow Paging [2], [15]: Shadow paging is an

alternate approach to log based recovery. It required

very less disk access than log based recovery, but it is

difficult to extend paging to allow multiple

transactions executing simultaneously. Shadow paging

is like paging used in operating system memory

management.

 The logic behind this approach is to use two pages

during a transaction: current page table and shadow

page table. Initially, before transaction starts

executing, both tables are exactly same. The shadow

page table will not change until the transaction is

completed. In contrast, the current page table is

updated every time with each write operation on

database. All database input and output operations

uses current page table to locate position of database

pages on disk. Each entry on table is pointer that

points to a physical page on the disk. After completion

of transaction, it will be committed, then all entries of

current page table are copied into shadow page table

and disk is updated with new data. Shadow page table

is stored in non-volatile storage which is fail-safe. If

system crash occurs during transaction, then make the

current page entries identical to the shadow page

entries by copying shadow entries into current page, as

shadow page table is never changed so need of using

undo operation.

International Journal of Research in Advent Technology, Vol.6, No.6, June 2018

E-ISSN: 2321-9637

Available online at www.ijrat.org

1241

Fig. 1. Shadow paging

Recovery with Concurrent Transaction [3]:

Concurrent transaction include number of users/clients

that perform multiple operations on a single database

which has single disk buffer and a log, which is shared

by all the transactions. In this scenario database is

immediately updated after a single write operation and

buffer can have data items updated by multiple

transactions. For concurrent transactions (i.e. multiple

transactions executing simultaneously) logs are not in

sequential order. So, it become difficult for recovery

system to track all logs and then begin for recovery.

To make it easy, most of database management system

uses ‟checkpoints‟. When a system with concurrent

transactions crashes and recovers, it behaves in the

below manner-

Fig. 2. Checkpoint

 The recovery system reads the logs

backwards from the end to the last

checkpoint.

 It maintains two lists, an undo-list and a redo-

list.

 If the recovery system sees a log with <Tn,

start > and <Tn, commit> or just <Tn,

commit>, it puts the transaction in the redo-

list.

 If the recovery system sees a log with <Tn,

start> but no commit or abort log found, it

puts the transaction in undo-list.
All the transactions in the undo-list are then undone

and their logs are removed. All the transactions in the

redo-list and their previous logs are removed and then

redone before saving their logs.

Before Image Table (BI table) [4]: Before image is a

image of date before it is updated or deleted. It is

available in all DBMS with different form. BI table is

tie with its base table and has same structure as its

corresponding base table. Data which is deleted from

base table is inserted automatically into BI table with

the help of triggers. When data in base table is updated

or deleted then after delete or after update trigger is

automatically invoked and old value is inserted into

corresponding BI table.
BI tables may introduce redundant data because

there are chance to exist more than one before image

in database system. Size of BI table is increases with

increasing update or delete operation on database.

3. SYSTEM OVERVIEW

A. Software requirements

Operating System: Microsoft Windows 2003 or

greater

IDE: Borland C++ Builder 6.x
Database Server

B. Hardware requirements

Intel(R) Core(TM) 2 Duo CPU @ 2.2GHz

or later Memory: 2 GB DDR3 or more

Capacity: 1697MHz or more

Cores: 2 or more

International Journal of Research in Advent Technology, Vol.6, No.6, June 2018

E-ISSN: 2321-9637

Available online at www.ijrat.org

1242

C. Input

 Directory path that contains table files and

 password for encrypted table.
D. Output

 Display log that contains all findings

 information related to table as well memo

 files.
 Create backup file for original table files before

 fixing the errors as it may lead to loss of data.

4. SYSTEM ARCHITECTURE

Repair utility scans a given directory for table files

and performs several checks for corruption or bad

data. It writes all findings to a log file and displays a

„VALID‟ tag for each correct file and „INVALID‟ for

each corrupted file in the directory. If client decide to

fix the invalid files, it asks to client if he‟d like to back

up the original table files. It then performs the same

checks and fixes problems whenever possible.
Encrypted tables require the table password to be

analyzed by repair utility. If no password or an

incorrect password is supplied, repair utility displays

the table name along with „ENCRYPTED‟ showing it

was unable to analyze the table. □

5. SYSTEM ANALYSIS

A. Table header

 Table 1 shows structure of table header with some

of its field. Table header is in the same physical file as

record data.

B. Record header

Record Header is 5 bytes. It gives following record

information

4 extra bytes

- Contains user ID if record involve in a

transaction else contain 4-bytes long value

of zero.

 1 byte for other information
- Record Encrypted

- Record updated/appended within a
transaction

TABLE 1: TABLE HEADER

Data Type Description

STRING Table identifier

UINT32 Table structure version.

UINT64 Number of records in the table

UINT32

First record position (IOW, the

header length)

UINT32 Record width

UINT64

Record number of first deleted record in

our deleted record linked list

UINT64 Number of records marked for deletion.

STRING
Encrypted encryption password

associated with this table

 Options information. Bits set for:

VOID
1) Contains memo file,

2) Has auto-increment field,

 3) Table is encrypted

Fig. 3. System architecture

International Journal of Research in Advent Technology, Vol.6, No.6, June 2018

E-ISSN: 2321-9637

Available online at www.ijrat.org

1243

C. What and how to fix table file

 Incorrect file size: check physical file size

with calculated file size using table header.

Following is formula to calculate file size

using table header

fsize = (rlength * no:of records)+headerlength (1)

where,

fsize = filesize
rlength = record length

 Record is encrypted but table is not

encrypted: Even though it is possible to

encrypt some records and not others, it is

usually corruption in the record header rather

than intentional. With this option enabled,

repair utility will clear the encryption bit in

the record header.

 Records that have never been released from a

transaction: Repair utility will reset

transaction bits to a complete transaction

state.

 Incorrect record count: Repair utility will

reset the record count in the table header to

reflect the current record number.

Repair utility finds maximum auto increment

value and row version value by scanning

each record and compare that value with

header auto increment and row version

value. If mismatch found then repair utility

update header value by actual max auto and

max row version value which got from

records.
 Corruption associated with memo files:

 Memo block overlapping If repair utility

 finds multiple records in the table file that

 have memo fields pointing to the same memo

 data blocks in the memo file, it will make a

 copy of one of the memos to avoid the

 overlap.
 Corruption in the free block list memo files

 keep a list of allocated but unused blocks for

 memo data. If repair utility finds free list

 entries with bad or overlapping pointers it

 will clear them.
Invalid memo pointers (past EOF, before

BOF, in memo header) table records with

bad memo pointers will be reset to zero (no

data). Orphaned memo blocks in the memo

allocated but not referenced by any records

will be reported to the log, but not modified.

6. RESULT

After providing corrupted table file repair utility

checks table as well as memo files and report all the

findings into log file. As shown in figure 4 it gives

corruption information of table file.

Figure 5 shows, record points to page 81 00 00 00

with size of memo 60 6A 00 00 i.e 27232 bytes and

next record points to 82 00 00 00 which is within the

previous memo. This is corruption of overlapping

blocks.

Fig. 4. Log file

 Fig. 5. Corrupted table file

 To resolve this overlapping issue repair utility

copies those overlapped blocks so that each

record can have their own copy of memo and

newer page location is updated in table file as

shown in figure 6.

International Journal of Research in Advent Technology, Vol.6, No.6, June 2018

E-ISSN: 2321-9637

Available online at www.ijrat.org

1244

 Fig. 6. Fixed table file

7. COCLUSION

Database is an important part of computer system

that is used to store and retrieve the data. When failure

occurs, then the information stored in database is lost

and database becomes inconsistent. Recovery

mechanism is an essential part of a database system

which can restore the database to the consistent state

that existed before the failure.
 The system i.e. repair utility will be helpful to

detect and fix that errors using table header and record

header. (A.1)

REFERENCES

[1] Phillip Bohannon, Rajeev Rastogi, S. Seshadri,
Avi Silberschatz, “Detection and Recovery
Techniques for Database Corruption”, vol.15,
no.5, September/October 2003.

[2] P. R. Patel, “Database recovery Techniques: A

review,” International Journal of Engineering and

Computer Science, vol. 4, April 2015.

[3] P. Bohannon, J. Parker, R. Rastogi, S. Seshadri,

A. Silberschatz, and S. Sudarshan, “Distributed

multi-level recovery in a main memory database,”

Proc. Fourth Intl Conf. Parallel and Distributed

Information Systems, 1996.

[4] M. Xie, H. Zhu, Y. Feng, and G. Hu, “Tracking

and repairing damaged databases using before

image table,” IEEE Japan-China Joint Workshop

on Frontier of Computer Science and Technology,

2008.

[5] M. Mahmoodi, A. Baraani, and M. R.

Khayyambashi, “Recovery time improvement in

the mobile database systems,” Institute of

Electrical and Electronics Engineers (IEEE),

2009.

[6] B. Panda and K. A. Haque, “Extended data

dependency approach: A robust way of rebuilding

database,” Proc. ACM Symp. Applied Computing

(SAC 02), pp. 446–452, 2002.

[7] G. Li and L. Shu, “Design and evaluation of a

low-latency checkpointing scheme for mobile

computing systems,” The Computer Journal, vol.

49, no. 5, 2006.

[8] R. Koo and S. Toueg, “Checkpointing and

rollback recovery for distributed systems,” IEEE

Trans. Softw. Eng., vol. 13, no. 1, pp. 23–31,

1987.

[9] R. Prakash and M. Singhal, “Low-cost

checkpointing and failure recovery in mobile

computing systems,” IEEE Transactions on

Parallel and Distributed Systems, vol. 7.

[10] Y. Rajesh and B. Panda, “Transaction fusion: A

model for data recovery from information

attacks,” journal of Intelligent Information

Systems Attacks, vol. 23, Nov. 2004.

[11] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh,

and P. Schwarz, “Aries: A transaction recovery

method supporting fine granularity locking and

partial rollbacks using write-ahead logging,”

ACM Trans. Database Systems, vol. 17, no. 1, pp.

94–162, 1992.

[12] T. Chiueh and D. Pilania, “Design,

implementation, and evaluation of a repairable

database management system,” Proc. Annual

Computer Security Applications Conference

(ACSAC 04), pp. 179–188, Dec. 2004.

[13] P. Broessler, G. Weikum, C. Hasse and P. Muth,

“Multi-level recovery,” Proc. ACM SIGACT-

SIGMOD-SIGART Symp. Principles of Database

Systems, pp. 109–123, June 1990.

[14] H. Jagadish, A. Silberschatz, and S. Sudarshan,

“Recovering from main memory lapses,” Proc.

Intl Conf. Very Large Databases, 1993.

[15] V. Kumar and A. Burger, “Performance

measurement of main memory database recovery

algorithms based on update-in-place and shadow

approaches,” IEEE Transactions on Knowledge

and Data Engineering, 1992.

